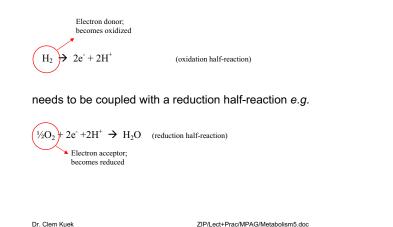

Aerobic/Anaerobic Respiration


Respiration

Generation of Proton Motive Force (via catalytic reactions) created by the transfer of protons across the plasma membrane to the exterior, and transfer of electrons in an electron transport chain to an external terminal electron acceptor

The physical chemistry of electron transfer

Oxidation-reduction (redox) reactions

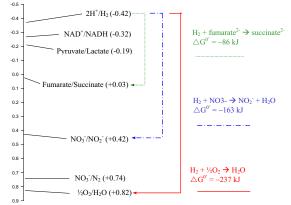
Redox

Reduction potential (E_o')

The tendency to become either reduced or oxidized At pH 7 E_o ' for H₂ \rightarrow 2e⁻ + 2H⁺ is -0.421 volts

$\textit{E}_{o}\textit{'} \text{ for } ^{1\!\!/_{\!\!2}}\!O_2 + 2e^{^-}\!+\!2H^{^+}$	\rightarrow	H_2O	is +0.816 volts

Redox couples


oxidized form • reduced form

Couple	E°,
$2H^+/H_2$	-0.421 V
$^{1/2}O_{2}/H_{2}O_{2}$	+0.816 V

The more negative the E_o the more the tendency to donate electrons. The positive the E_o the more the tendency to accept electrons

$\triangle G^{o}$, (free energy) and E_{o} .

The Electron Tower

- Strong reductants at the top of the tower
- Strong oxidants at the bottom of the tower
- Electron transfer moves exergonically from more negative to more positive Eo' couples

2

4

Electron transport chains in microbes

Series of linked redox couples move electrons from compounds with more negative E_o to those with less negative E_o

- Found the plasma membrane of prokaryotes and mitochondria of eukaryotes
- Contain
 - Primary electron donor e.g. NADH
- Flavoproteins, cytochromes, ferredoxins, quinones (redox couples)
- NADH dehydrogenases and electron transfer enzymes
- Terminal electron acceptor e.g. O₂; NO₃⁻

Dr. Clem Kuek

ZIP/Lect+Prac/MPAG/Metabolism5.doc

Electron transport chains in microbes 2

- Transport e⁻ and H⁺ between energy sources and energy storage or biosynthesis
- Respiratory ETC: from catabolism to oxidative phosphorylation of ADP
- Photosynthetic ETC: from light source to phosphorylation of ADP and/or oxidation of NADP⁺ to NADPH
- Lithotrophic ETC: from inorganic compounds to reduce NAD⁺ to NADH

• Movement of protons and electrons/ATP production

- Electron and protons may enter ETC at different stages from *e.g.* NADH, FADH, lactate
- Protons excreted at various stages of chain
- Electrons transferred to external acceptors via oxidases/reductases creates Proton Motive Force to phosphorylate ADP

Respiratory Electron Transport Chains

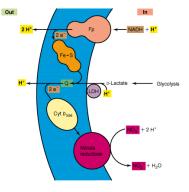
- Two types of respiration
- Aerobic: When only O₂ is the external, terminal electron acceptor
- Anaerobic: External, terminal e⁻ acceptors other than O₂
- Dr. Clem Kuek

ZIP/Lect+Prac/MPAG/Metabolism5.doc

Aerobes and anaerobes using respiration

- Aerobes
- Only O₂ as terminal, external e⁻ acceptor
- have cytochrome oxidase as terminal enzyme in the ETC
- need to protect cell against oxidation by superoxide (O₂⁻), H₂O₂, hydroxyl radicals (by-products of reduction of O₂ to H₂O in respiration)
 o superoxide dismutase, catalase, peroxidase
- Facultative anaerobes and strict anaerobes
- Have other than O₂ as terminal, external e⁻ acceptor
- Have no cytochrome oxidase; other terminal enzyme
 e.g. nitrate reductase, nitrite reductase
- Various kinds of anaerobic respiration processes
- Various external terminal electron acceptors

 nitrate, sulphate, CO₂, fumarate
- Reducing power differentials: more negative = more anaerobic


Anaerobic respiration with nitrate reduction

Nitrate

- assimilated to organic N by aerobic heterotrophs under aerobic conditions
 e.g. into amino acids and used for growth
- dissimilated by denitrifying bacteria for energy
- o used for energy production in respiration to form nitrite and products returned to environment

Dissimilatory nitrate reductase

- enzyme biosynthesis repressed by O₂, synthesised under anoxia
- Further reduction of NO₂ by series of various nitrogen reductases in different bacteria
- Denitrification in soil, water, effluent $NO_2 \rightarrow N_2O \rightarrow NH_3 \rightarrow N_2$
- Nitrogen lost to organisms for assimilation

7

5

Anaerobic Respiration: Other terminal electron acceptors

- Sulphate
 - oxidised to organic S compounds *e.g.* methionine, (assimilation) concurrently with
- reduction (dissimilation) to sulphite, H₂S generates ATP
- Specialised electron transport chains
- electrons donated from acetate, H₂, lactate, not glycolysis and TCA cycle

• Organic electron acceptors

- CO₂ reduced in methanogens to methane and in homoacetogens to acetate
- Fumarate \rightarrow succinate; trimethylamine oxide \rightarrow trimethylamine

• Nutrient cycling in the environment

Reduction of nutrients is anaerobic part of biogeochemical cycles of elements

Energy Production from Respiration

- Proton/Oxygen (P/O) ratios
 - moles of ATP per atom of O₂ utilised (aerobes)
 - also relates to moles of ATP per 2 protons excreted by ETC
 - depends on stage at which protons/electrons enter ETC
 - often P/O ratio = 3 (aerobes) but may only be 1 2 in strict anaerobes and facultative anaerobes

• Calculations based on oxidation of NADH + H⁺ via aerobic respiration:

- 2e⁻ transferred through ETC to ½O₂ (1 atom O)
- 3 × 2H⁺ excreted for each transfer of electron pair
- $2H^+ + \frac{1}{2}O_2 \rightarrow H_2O$ external to membrane
- 3H⁺ used to produce 3 ATP; 3H⁺ released to environment

Dr. Clem K	uek
------------	-----

ZIP/Lect+Prac/MPAG/Metabolism5.doc

Dr. Clem Kuek

ZIP/Lect+Prac/MPAG/Metabolism5.doc

10

Energy Production from Catabolism

Substrate level phosphorylation of ADP

- ADP + Pi → ATP directly during oxidation of organic substrate
- Of lesser importance as source of energy in respiratory dependent micoorganisms
- Occurs in
- EMP, Entner-Doudoroff, Phosphoketolase Pathways not Pentose Phosphate Pathway
 TCA cycle with GDP → GTP / ADP → ATP
- _
- Oxidative Phosphorylation of ADP: Respiration
 - ATP generated from Proton Motive Force
- Of greater importance as source of energy in respiratory dependent microorganisms
- Occurs as a result of all glycolytic pathways and TCA cycle (NADH + H/FADH + H)

Energy Production from Catabolism 2

- ATP yield from aerobic catabolism of one glucose molecule Based on P/O ratio = 3 for NADH; 2 for FADH₂ (in oxidative phosphorylation)
- Glycolytic pathway
- Substrate level phosphorylation
 2 ATP

 Oxidative phosphorylation with 2 NADH
 6 ATP

 2 pyruvate to 2 acetyl-CoA
- Oxidative phosphorylation with 2 NADH 6 ATP
- Tricarboxylic acid cycle Substrate level phosphorylation (GTP) 2 ATP Oxidative phosphorylation with 6 NADH 18 ATP Oxidative phosphorylation with 2 FADH₂ 4 ATP
- Total aerobic yield 38 ATP

Identification of various respiratory types

- (Cytochrome) Oxidase test
- Positive reaction identifies organisms which use aerobic respiration
- Nitrate reductase test
- Positive reaction identifies organisms which use nitrate as terminal electron acceptor in anaerobic respiration

Catalase test

Positive reaction identifies organisms which are facultatively anaerobic, *i.e.* tolerate O₂, or use aerobic respiration

Organisms not using nitrate or oxygen

- are negative for (cytochrome) oxidase and nitrate reductase
- may be positive or negative for catalase

Catalase negative organisms

- may still be O₂ tolerant
- may be aerobes, facultative or strict anaerobes

Dr. Clem Kuek

ZIP/Lect+Prac/MPAG/Metabolism5.doc