Week 4 Analysing Acids and Bases

Acid

A substance that donates a hydrogen ion (proton) A proton is donated in the acid-base reaction: HCI (aq) + H₂O (I) \rightarrow H₃O (aq) + Cl⁻ (aq) Strong acids completely ionise in water Weak acids weakly deionise e.g. CH₃COOH (I) + H₂O \leftrightarrow CH₃COO⁻ (aq) + H₃O (aq) At any instance, most ethanoic acid molecules are not ionised.

Base

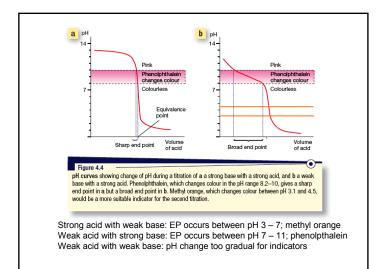
A substance that accepts a hydrogen ion (proton) Strong bases readily accept protons *e.g.* NaOH, KOH. Weak bases accept protons less readily *e.g.* ammonia (NH₃)

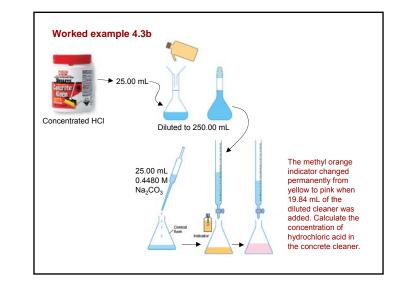
Base

The concentration of H_3O^+ ions is referred to as the solution's acidity. Acidity is measured using a logarithmic scale called the pH scale.

The definition of pH is:

 $pH = -log[H_3O^+]$

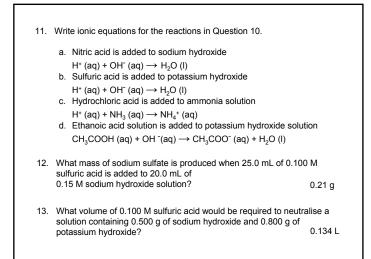

Where $[H_3O^+]$ is the concentration of H_3O^+ ions measured in mol L⁻¹

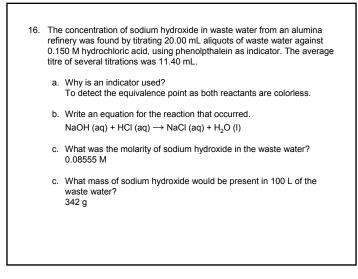

Acidic solutions have a pH < 7Basic solutions have a pH > 7

Indicators Used in acid-base titrations to identify the equivalence point. Acid-base indicator : a substance whose color depends on the concentration of H_3O^+ ions in solution. They are weak acids: acid form has one color and conjugate base another. $f(t) = \int_{t}^{t} \int_{t}^$

TABLE 4.1 Common indicators				
Indicator	Colour of acid form	Colour of base form	pH range	
Phenolphthalein	Colourless	Pink	8.2–10.0	
Methyl orange	Pink	Yellow	3.2-4.4	
Bromothymol blue	Yellow	Blue	6.0–7.6	

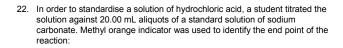
Indicators must be chosen carefully to ensure that color change occurs at the titration end point – the equivalence point of the reaction.




Solution	
$\begin{aligned} & 2\text{HCI}(\text{aq}) + \text{Na}_2\text{CO}_3 \longrightarrow 2\text{NaCI}(\text{aq}) + \text{H}_2\\ & \text{In } 20.00 \text{ mL } \text{of } \text{Na}_2\text{CO}_3 \text{ solution}\\ & n(\text{Na}_2\text{CO}_3) = c(\text{Na}_2\text{CO}_3) \times V(\text{Na}_2\text{CO}_3)\\ & = 0.4480 \text{ mol } \text{L}^{-1} \times 0.020 \text{ L}\\ & = 0.008960 \text{ mol} \end{aligned}$ From the equation, 2 mol of HCl reacts we	
So the ratio $\frac{n(\text{HCI})}{n(\text{Na}_2\text{CO}_3)} = \frac{2}{1}$ $n(\text{HCI}) = 2 \times n(\text{Na}_2\text{CO}_3)$ $= 2 \times 0.008960$ = 0.01792 mol $c(\text{HCI}) = \frac{n(\text{HCI})}{V(\text{HCI})}$ $= \frac{0.01792 \text{ mol}}{0.01984 \text{ L}}$ $= 0.9032 \text{ mol L}^{-1}$	The concentration of the diluted cleaner is 0.9032 M Since the cleaner had been diluted before titration, the concentration of the concrete cleaner is $c(HCI) = 0.9032 \times \frac{250}{10}$ = 9.032 M

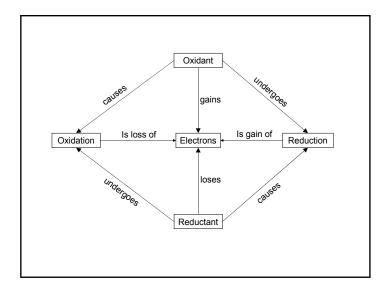
Chapter review

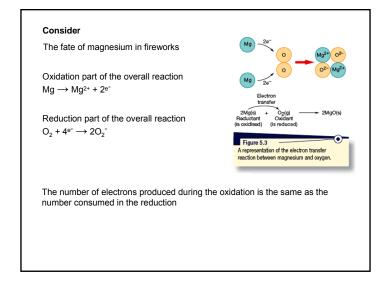
Acid-base reactions


- 10. Write full equations for the acid-base reactions that occur when:
 - a. Nitric acid is added to sodium hydroxide
 HNO₃ (aq) + NaOH (aq) → NaNO₃ (aq) + H₂O (I)
 - b. Sulfuric acid is added to potassium hydroxide H_2SO_4 (aq) + 2KOH (aq) $\rightarrow K_2SO_4$ (aq) + 2H₂O (I)
 - c. Hydrochloric acid is added to ammonia solution HCl (aq) + $NH_3 \rightarrow NH_4Cl$ (aq)
 - d. Ethanoic acid solution is added to potassium hydroxide solution CH_3COOH (aq) + KOH (aq) $\rightarrow CH_3COOK$ (aq) + H₂O (I)

- 17. A 42.7 mL volume of a hydrochloric acid solution is required to react completely with 20.0 mL of 0.612 M sodium carbonate solution.
 - a. Write an equation for the reaction. 2HCl (aq) + Na₂CO₃ (aq) \rightarrow 2NaCl (aq) + H₂O (aq) + CO₂ (g)
 - b. Calculate the concentration of the hydrochloric acid, in mol L-1. $0.573\ \text{M}$
- A 1.20 g antacid tablet contains 80.)% by mass of magnesium hydroxide as the active ingredient. What volume of 0.1500 M hydrochloric acid would the antacid tablet neutralise?
 220 mL

- 20. A 50 mL sample of vinegar was diluted to 250 mL in a volumetric flask. A 20.00 mL aliquot of this solution required the addition of 27.98 mL of 0.134 M sodium hydroxide solution in order to be neutralised.
 - a. Write an equation for the neutralisation equation. CH_3COOH (aq) + NaOH (aq) \rightarrow CH_3COONa (aq) + H_2O (I)
 - b. What is the molarity of the ethanoic acid in the original vinegar?
 0.937 M
 - c. Express your answer to Part B in g L^1 56.3 g L^1 $\,$




2HCl (aq) + Na₂CO₃ (aq) \rightarrow 2NaCl (aq) + H₂O (l) + CO₂ (g)

The sodium carbonate solution had been prepared by dissolving 1.236 g of anhydrous Na_ZCO_3 in water and making the solution up to 250.0 mL in a volumetric flask. The titres recorded were 21.56 mL, 20.98 mL, 20.96 mL and 21.03 mL.

- a. What value for the titre of sodium carbonate solution should the student use in the calculation of the acid concentration? Explain your answer.
 20.99 mL
- b. What is the molarity of the sodium carbonate solution? 0.04666 M
- c. Calculate the concentration of the hydrochloric acid in mol L⁻¹. 0.08892 mol L⁻¹

What is a redox reaction? Involves the transfer of electrons One of the reactants loses electrons: oxidation One of the reactants gains these electrons: reduction Oxidation and reduction occur simultaneously

1. Name the chemicals that undergo oxidation in the following reactions

a. $2Zn(s) + O_2(g) \rightarrow 2ZnO(s)$

b. Ca (s) + Cl₂ (g) \rightarrow CaCl₂

c. $2AgBr(s) \rightarrow 2Ag(s) + Br_{2}(g)$

2. Indentify the oxidants and reductants in each of the reactions above.

Oxidation state

A measure of the degree of oxidation of an atom in a substance. It is defined as the charge an atom might be imagined to have when electrons are counted according to an agreedupon set of rules

Rules for determining oxidation numbers				
Species	Oxidation number	Examples		
Free elements	0	Cl; Mg; C; O ₂ ; H ₂		
Ionic compounds	Equal to the charge on ion	$\begin{array}{cccccc} +1-1 & +3 & -2 & +2 & -1 \\ \text{Na} \text{Cl} & \text{Al}_2 \text{O}_3 & \text{Ca} \text{Cl}_2 \end{array}$		
Oxygen in compounds	Defined as -2 in its compounds. H_2O_2 is an exception, where it is -1	O = -2 in H ₂ O, CO ₂ , Na ₂ O		
Hydrogen in compounds	Defined as +1 in compounds with non- metals	H = +1 in HCl, H_2S , CH_4		
Molecular ions and molecules	The sum of the oxidation numbers equals the charge on the molecular ion (0 in the case of neutral molecules). The most electronegative element has the negative oxidation number	For Mno ₄ oxygen is defined as -2. Because there are 4 oxygen atoms, to have an overall charge of -1, Mn must have an oxidation number of +7		

Worked example 5.2b

For $CO_3^{2^-}$, the sum of the oxidation numbers equals the ionic charge of 2⁻. The oxidation number of O is fixed as -2. Find the oxidation number of carbon.

Solution

(oxidation number of C) + 3 X (oxidation number of O) = -2 If, (oxidation number of C) + 3(-2) = -2then the oxidation number of C must = +4

The oxidation numbers are $\overset{+4-2}{C}O_3^{2-}$

Variable oxidation number

The oxidation number of the transition metals vary depending upon the compound. The different oxidation states often have characteristic colors *e.g.* as in vanadium compounds

Solutions of vanadium compounds that have various oxidation numbers

Using oxidation numbers to name chemicals e.g. there are 2 iron chlorides. Roman numerals are used to represent the oxidation state:

 $FeCl_2$ is iron (II) chloride $FeCl_3$ is iron (III) chloride

a. b. c. d.	CO_2 CH_4 C	on number (+2 +4 -4 0 +4	of carbor	n in	
		0		es contain mangan , K ₂ MnO ₄ , KMnO ₄	ese in the +6 K ₂ MnO ₄
	ons. Hint: For			element in the follow use the charge on e	0 1
а.	CaO	Ca +2	0-2		
b.	CaCl ₂	Ca +2	CI -1		
C	HSO4	H +1	S +6	O -2	
0.					
	MnO₄⁻	Mn +7	0-2		
d.	MnO_4^- F ₂	Mn +7 F 0	0 -2		
d. e.	-				
d. e. f.	F ₂ SO ₃ ²⁻	F 0	0 -2	O -2	

Assign oxidation numbers to each element in these equations, and hence identify the oxidant and the reductant:
a. Mg (s) + $Cl_2 \rightarrow MgCl_2$ (s) Oxidant: Cl_2 ; Reductant: Mg
b. $2SO_2(g) + O_2(g) \rightarrow 2SO_3$ Oxidant: CO_2 ; Reductant: SO_2
c. $Fe_2O_3 (s) + 3CO (g) \rightarrow 2Fe (s) + 3CO_2 (g)$ Oxidant: Fe_2O_3 ; Reductant: CO
d. $2Fe^{2*}$ (aq) + H_2O_2 + $2H^* \rightarrow 2Fe^{3*}$ (aq) + $2H_2O$ (I)) Oxidant: H_2O_2 ; Reductant: Fe^{2*}

$\begin{array}{c} 2(Mg \rightarrow Mg^{2*} + \\ O_2 + 4^{\circ^-} \rightarrow 2O^{2^-} \\ 2Mg \ (s) + O_2 \ (g) \rightarrow 2MgO \end{array}$	Reduction half equation
gained during the reaction.	st must be equal to the number of electrons balancing redox equations
Rule	Example
Rule Balance all elements except hydrogen and oxygen	Example $\operatorname{Cr}_2O_7^{2-}(\operatorname{aq}) \longrightarrow 2\operatorname{Cr}^{3+}(\operatorname{aq})$
Balance all elements except	•
Balance all elements except hydrogen and oxygen Balance oxygen using H ₂ O	$\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq}) \longrightarrow 2\operatorname{Cr}^{3+}(\operatorname{aq})$

Worked example 5.3

When a pale green solution containing Fe2⁺ ions is mixed with a purplecolored solution of MnO4⁻ ions, the purple color disappears. Fe3⁺ and Mn2⁺ ions are formed. Write a balanced equation for this reaction.

Solution

Fe²⁺ (aq) Fe³⁺ (aq) + e⁻

 $MnO_{4} \rightarrow Mn^{2+}$

$MnO_4^- \rightarrow Mn^{2+} + 4H_2O$	(add water)
$MnO_4^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$	(add H⁺)
MnO_4^- (aq) + 8H ⁺ (aq) + 5e ⁻ $\rightarrow Mn^{2+}$ (aq) + 4H ₂ O (I)	(add e-)

To write an overall equation, the half equations are multiplied so that the number of electrons on each side is the same. They are added together and simplified if required:

5 X Fe²⁺ (aq) \rightarrow Fe³⁺ (aq) + e⁻

 MnO_4 (aq) + 8H⁺ (aq) + 5e⁻ \rightarrow Mn^{2+} (aq) + 4H₂0 (I)

 MnO_4^- (aq) + 8H⁺ (aq) + 5Fe²⁺ (aq) $\rightarrow Mn^{2+}$ (aq) + 5Fe³⁺ (aq) + 4H₂O (I)

Redox titrations

The concentration of redox reactants can be found by volumetric analysis: redox titrations.

tem	Ingredient for analysis	Titrate with
Nine	Ethanol	Iron(II) solution, after reaction with an excess of potassium dichromate solution
Wine	Sulfur dioxide	lodine solution
Fruit juice	Vitamin C (ascorbic acid)	lodine solution
Household bleach	Hypochlorite ion	Sodium thiosulfate solution, after reaction with an excess of acidified potassium iodide solution
Hair bleach	Hydrogen peroxide	Potassium permanganate solution

Worked example 5.4

A 10 mL sample of white wine was placed in a volumetric flask and water was added to make 100 mL of solution. Then 20.0 mL aliquots of the diluted wine were titrated against 0.100 M acidified potassium dichromate solution. The mean titre was 24.61 mL. Calculate the concentration of ethanol in the sample of white wine.

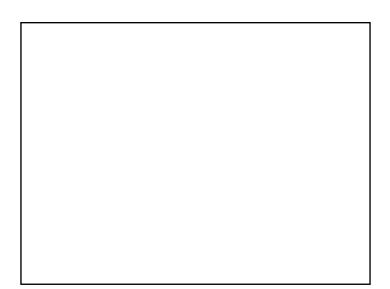
 $2Cr_2O7^{2-}(aq) + 3CH_3CH_2OH(aq) + 16H^+(aq) \rightarrow 4Cr^{3+}(aq) + 3CH_3COOH(aq) + 11H_2O(I)$

Solution

 $n(Cr_2O_7^{2-}) = c(Cr_2O_7^{2-} \times V(Cr_2O_7^{2-}))$ $= 0.100 \text{ mol } \text{L-1 } \times 0.02461 \text{ L} = 0.002461 \text{ mol}$ From the equation, 2 mol of Cr₂O₇²⁻ reacts with 3 mol of CH₃CH₂OH

So, the ratio is
$$\frac{n(\text{ethanol})}{n(\text{dichromate})} = \frac{3}{2}$$

 $n(\text{ethanol}) = \frac{3}{2} \times 0.002461 = 0.003692 \text{ mol}$


The amount of ethanol in the 20.0 mL of diluted wine is 0.003692 mol. Since this volume of wine was taken from a total volume of 100.0 mL, there would be 100/20 or 5X this amount in the original 10.0 mL sample: 0.003692 X 5 = 0.01846 mol $c(\text{ethanol}) = \frac{n(\text{ethanol})}{V(\text{ethanol})} = \frac{0.01846 \text{ mol}}{0.100 \text{ L}} = 1.846 \text{ mol } \text{L}^{-1}$

The concentration of alcohol in the wine is 1.85 M

12. Potassium permanganate reacts with hydrogen peroxide: $2MnO_4^{-}(aq) + 5H_2O_2(aq) + 6H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 5O_2(q)$ 25.0 mL of 0.02 M KMnO₄ solution is reduced by 20.0 mL of H_2O_2 solution. What is the concentration of the hydrogen peroxide solution? 0.0625 M

13. An artist uses 10.0 mL of 15.0 M HNO3 to etch a design into a copper sheet. What mass of copper will have reacted with the acid? $Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2H_2O(l) + 2NO_2(g)$ 2.38 g

Page 58 Questions 14 a, c; 15 a,c,e; 17; 21; 23; 24; 25; 27; 28

